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a b s t r a c t

The numerical simulation of high Reynolds number flows is hampered by model accuracy if the

Reynolds-averaged Navier–Stokes (RANS) equations are used, and by computational cost if direct or

large-eddy simulations (LES) that resolve the near-wall layer are employed. The cost of a calculation

scales like the Reynolds number to the power 3 for direct numerical simulations, or 2.4 for LES, making

the resolution of the wall layer at high Reynolds number infeasible even with the most advanced

computers. In LES, an attractive alternative to compute high-Re flows is the use of wall-layer models, in

which only the outer layer is resolved, while the near-wall region is modeled. Three broad classes of

approaches are presently used: bypassing this region altogether using wall functions, solving a separate

set of equations in the near-wall region, weakly coupled to the outer flow, or simulating the near-wall

region in a global, Reynolds-averaged, sense. These approaches are discussed and their ranges of

applicability are highlighted. Various unresolved issues in wall-layer modeling are presented.

& 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

One main obstacle to the application of large-eddy simulations
(LES) to industrial applications is the CPU time required to
perform resolved LES of wall-bounded flows. Cost estimates for
LES can be found in various Refs. [1–4]. They are based on the
consideration that in LES the integral scales of motion must be
accurately resolved. In wall-bounded flows the integral scale,
away from walls, is proportional to the boundary-layer thickness,
d; a reasonable estimate of the grid spacing in each direction is
then Dxi ’ d=25� d=15. If one considers a cube of side d and
volume d3 as the basic unit, its resolution will require about 800
grid points. In order to simulate a computational domain of
dimensions Lx � Ly � Lz one needs Nc;x � Nc;y � Nc;z unit cubes,
with Nc;x ¼ Lx=d and so on. The number of grid points can then be
estimated by multiplying the number of d3 cubes by the number
of points per cube (�800). As the Reynolds number Re (based on
ll rights reserved.
the boundary-layer thickness) is increased, d decreases, and the
number of cubes required to cover the area Lx � Lz increases (it
may be assumed that, in the direction normal to the wall, only a
few (2 or 3) boundary-layer thicknesses need to be resolved: in
the inviscid region the grid can be coarsened rapidly, so that the
number of points required to resolve the potential region is
negligible). For boundary-layer flows, in which d / Re�0:2, this
results in a number of cubes proportional to Re0:4 so that the
number of grid points required to resolve the outer layer is

ðNxNyNzÞol / Re0:4. (1)

In the near-wall region,1 the Re-dependence of the resolution is
much steeper, since the near-wall eddies that need to be resolved
scale with wall units. As the Reynolds number is increased, the
physical dimensions of these eddies decrease much more rapidly
1 We define here the inner layer as the lower 10% of the boundary-layer

thickness. For a high-Reynolds number boundary layer, this would include the

viscous sublayer, the buffer region and part of the logarithmic layer.
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than the boundary-layer thickness, resulting in more stringent
grid requirements. Assuming that a nested grid system is used,
with mesh spacing that increases in all directions as one moves
away from the wall, Chapman [1] estimated that the number of
points required to resolve the inner layer is

ðNxNyNzÞil / Cf Re2
/ Re1:8, (2)

where Cf ¼ 2tw=rU2 is the skin-friction coefficient, tw is the wall
stress, r the fluid density and U a reference velocity (the free-
stream velocity in a boundary layer).

To obtain the cost of a calculation one must also consider that
the equations of motion must be advanced for several integral
time-scales of the flow in order to obtain converged statistics. The
time-step is generally determined by a CFL condition, which gives
Dt / Dx=U (in attached flows the streamwise direction is the most
restrictive from this point of view). Thus, the number of time-
steps required to perform a simulation is proportional to the
number of grid points in one direction, Nt / Re0:2 for the outer
layer, while Nt / Re0:6 for the inner layer. The total cost of a
calculation, therefore, scales like Re0:6 for the outer layer, and like
Re2:4 if the inner layer is to be resolved.

This cost estimate is shown in Fig. 1, in which the CPU time
required to compute a turbulent boundary layer is estimated for
three different codes used by the author: a Cartesian code with a
staggered, second-order discretization; a co-located finite-volume
code suited for body-fitted grids, also second-order in space and
time; an unstructured, second-order accurate, finite-volume code.
The cost per time-step and grid point was measured on an AMD
Opteron processor for a calculation at a given Re, and the scaling
laws derived above were used to extend the cost estimate to
higher Re. From this figure, one can observe that even at moderate
Reynolds numbers (Re ’ 104) over 50% of the resources are used
to resolve only 10% of the flow. For Re45� 104 a vanishing
fraction of the grid points is used in the outer layer.

As a consequence of this unfavorable scaling, wall-resolved LES
are limited to very moderate Reynolds numbers. Only if massive
computational resources (clusters with thousands of processors)
are available, calculations at Reynolds numbers of marginal
engineering interest (Re�105) are possible. Resolved LES is clearly
not suitable for design, in which substantially more rapid
throughput is required to evaluate and compare possible designs
within strict time limits, or to study aerodynamic or geophysical
flows at Re ¼ 106
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Fig. 1. Cost, in CPU seconds, of the LES of flat-plate boundary-layer flow. The calculati

source unstructured one. Actual mileage may vary.
This limitation was recognized from the earliest applications of
LES, and attempt to bypass the inner layer and model its effects in
a global sense have been used since the pioneering calculations by
Deardorff [5] and Schumann [6]. The basic consideration, in
simulations in which the inner layer is modeled (wall-modeled
LES, or WMLES), is that the grid near the wall is too coarse to
resolve the eddies that contribute to the momentum transport. If
the mixing due to the near-wall eddies is not computed when no-
slip conditions are applied, an incorrect velocity profile results,
and under-prediction of the wall stress. Therefore, one must
model the transport of momentum by the inner-layer scales either
implicitly, by relating the outer-layer velocity to the wall stress
through an assumed velocity profile, or explicitly, by parameter-
izing their effect in the Reynolds-averaged sense. The critical
assumption that must be made is that the near-wall grid is so
coarse that it contains a very large (!1) number of near-wall
eddies, and that the time-step is much larger than their time-
scale, so that the filtering operation becomes equivalent to a
Reynolds average.

Deardorff [5] and Schumann [6] bypassed the inner layer by
using approximate boundary conditions similar to the wall
functions applied in Reynolds-averaged Navier–Stokes (RANS)
simulations with turbulence models. These boundary conditions
assume the existence of an equilibrium layer in which the stress is
constant. This results in the existence of a logarithmic layer that
can be used to relate the velocity in the outer layer to the wall
stress.

The development of more powerful computers resulted in
wall-resolved LES of wall-bounded flows at low or moderate
Reynolds numbers (for instance [7]), which allowed more detailed
studies of the turbulence physics. Approximate boundary condi-
tions, however, remained in widespread use in environmental and
geophysical flows. In these flows the geometry is generally quite
simple, and the Reynolds number extremely high, so that the
equilibrium layer assumption holds in most situations; correc-
tions can be made for buoyancy, roughness and other effects
common in these applications.

In engineering flows the use of approximate boundary
conditions based on the equilibrium-stress layer approximation
is less applicable. In the presence of strong favorable or adverse
pressure gradients, in separated flows or in flows in which the
mean velocity is highly three-dimensional, the assumption of the
existence of a logarithmic law does not hold. This prompted first
the derivation of corrections for models based on the logarithmic
107 108 109
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ons were performed on an AMD Opteron, using two in-house codes and an open-
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2 In the following, x will be the mean-flow direction, y the direction normal to

the wall, and z the spanwise direction. u, v and w are the respective velocity

components. An overline indicates a filtered variable.
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law [8–10], and then the development of hybrid models in which
simpler transport equations are solved in the inner layer, weakly
or strongly coupled to the outer-flow LES.

The two-layer model (TLM), originally proposed by Balaras and
coworkers [11,12], has weak coupling between the inner and outer
layers. A fine one-dimensional grid is embedded between the first
grid point and the wall, and a simplified set of equations
(generally, the Reynolds-averaged turbulent boundary-layer equa-
tions) is solved in the embedded mesh. The outer-layer LES
provide the boundary condition for the inner layer, whereas the
inner-layer calculation provides the wall stress required by the
LES. Cabot [13,14] and Cabot and Moin [15] explored various
features of this model, which was successfully used also by Wang
and Moin [10] in the simulation of a trailing-edge flow. A similar
approach, based on the two-layer simulation (TLS) method [16,17]
was applied by Gungor and Menon [18].

The use of hybrid simulations in which the RANS equations are
used in the inner layer, while the filtered Navier–Stokes equations
are solved in the outer layer, has become increasingly popular in
the past few years. Several strategies can be used to switch
between one model and the other, such as changing the length
scale in the model from a RANS mixing length to one related to the
grid size, or using a blending function to merge the SGS and RANS
eddy viscosities.

The direct modification of the length scale is used in the
detached eddy simulation [19] approach, and was employed by
Nikitin et al. [20] for the simulation of turbulent channel flow at
Reynolds numbers (based on the friction velocity ut ¼ ðtw=rÞ1=2

and channel half-height) up to 80,000. The model was able to
sustain turbulence, but the logarithmic layer in the LES region was
displaced upwards, resulting in a 15% under-prediction of Cf .
Baggett [21] attributed this error (known as ‘‘logarithmic law
mismatch’’, LLM) to the delayed generation of resolved eddies in
the interface region between the RANS and LES zones. Piomelli
et al. [22] and Keating and Piomelli [23] found that the addition of
stochastic forcing in the interface region accelerated the genera-
tion of resolved eddies, leading to more accurate results.
Radhakrishnan et al. [24], however, observed that in cases in
which mean-flow perturbations (adverse pressure gradients,
separation) create more unstable flow conditions, accurate results
can be obtained even without the stochastic forcing.

Several researchers have used hybrid RANS/LES schemes in
which a blending function is used to bridge the RANS and LES
zones. Hamba [25,26], performed channel flow simulation using
various hybrid RANS/LES models and suggested a method to
improve the mean velocity prediction through additional filtering.
He observed that the filter width in the RANS region is larger than
that in the LES region at the RANS/LES interface. To remove this
inconsistency, he defined two wall-normal velocity components at
the interface; one based on the LES filter width and another based
on the RANS filter width. The RANS velocity is obtained from the
LES one by additional filtering. This method introduces source
terms in both continuity and momentum equation and provides
forcing at the interface region whose effects are similar to the
forcing used in Refs. [22,23].

Temmerman et al. [27] calculated channel flow and a separated
flow in a channel constricted by a curved hill using hybrid RANS/
LES method. In their hybrid method, the eddy viscosity in the
RANS region is defined by Cmk1=2

modlm, where Cm is a constant, kmod is
the modeled turbulent kinetic energy and lm is the length scale,
which is either explicitly prescribed or obtained by solving an
additional transport equation. They obtained the constant, Cm, by
equating the RANS eddy viscosity to the LES eddy viscosity at the
interface. They were able to remove the shift in the mean velocity,
when they used the Cm value obtained instantaneously at every
point rather than using an averaged value along the homogeneous
direction. Use of spatially and temporally varying Cm also results
in the introduction of additional unsteadiness near the RANS/LES
interface.

Davidson and Peng [28] calculated channel flow and separated
flow past a hill using a hybrid RANS/LES method based on k2o
model in the RANS region, and the one-equation subgrid-scale
turbulent kinetic energy model of Yoshizawa [29] in the LES
region. They also observed the LLM in the channel flow, and
obtained better results in the separated flow, which they
attributed to the enhanced convective and diffusive transport
across the interface in the latter flow. Davidson and Dahlstrom
[30] computed channel flow and flow past a asymmetric plane
diffuser using a hybrid RANS/LES method with a one-equation
model for turbulent kinetic energy. In their simulation, forcing
was provided at the interface by adding a source term to the three
momentum equations based on velocity fluctuations taken from a
DNS database. With a carefully chosen coefficient for the source
term, they were able to remove the LLM in the channel flow.

Edwards and coworkers [31–33] performed hybrid simulations
of supersonic flows using Menter’s SST model [34] and a variety of
blending functions. They find that it is important to use
turbulence properties (rather than grid-related quantities) in the
definition of the blending function; in Ref. [33] they obtain
accurate results using a blending function that uses the Taylor
microscale as turbulence length scale. They observe, however, that
blending functions based on modeled quantities may exhibit
problem-specific responses, which can sometimes lead to non-
unique solutions (J.R. Edwards, personal communication, 2008).

Even this brief and incomplete summary of existing ap-
proaches for WMLES should alert the reader to the many
challenges that this technique, not surprisingly, faces. Given the
complexities of the flow in the inner layer, and its importance in
establishing the production cycle [35], one cannot expect that
modeling its effects on the outer flow may be easy or painless, or
that equal accuracy can be achieved compared with wall-resolved
calculations. It is, nonetheless, critical to develop reasonably
accurate wall-layer models, and also to estimate the errors that
can be expected from WMLES. In the following, the three general
techniques discussed above will be described in more detail, and
the challenges and achievements of each will be presented and
discussed.
2. Equilibrium-stress models

The assumption that a constant-stress layer exists near the
wall implies that the velocity at the first point in the outer layer
satisfies a logarithmic profile [36]:

Uþol ¼
Uol

ut
¼

1

k log
yolut
n þ B, (3)

where the subscript ol indicates the first grid point in the outer
layer, and Uol ¼ huolixz is the velocity at the first outer-layer point
averaged over an xz-plane.2 The von Kàrmàn constant k is
generally taken to be 0.41 [36], and B ’ 5:025:5. The logarithmic
law (3) can be matched to a linear law Uþol ¼ yþol for yþolo11 to
account forlow-Reynolds number effects.

This relationship can be used in a number of ways. Deardorff
[5] imposed that (3) be satisfied in the mean for u, and required
that the second derivatives of u and u in y be locally isotropic with
respect to the second derivative in z and x, respectively. Schumann
[6] obtained the mean stress from the global momentum balance
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(htwi is balanced by the imposed pressure gradient in a channel or
duct flow) and then used the following boundary conditions for
the streamwise and spanwise components of the wall stress:

tw;xðx; z; tÞ ¼
htwixz

Uol

� �
uðx; yol; z; tÞ, (4)

tw;zðx; z; tÞ ¼
htwixz

Uol

� �
wðx; yol; z; tÞ, (5)

where the dependence of Uol and htwi on time is omitted.
Grötzbach [37] applied similar conditions but obtained the wall
stress by solving (3) for ut.

Piomelli et al. [8] applied conditions similar to (4) and (5).
However, to take into account the inclination of the elongated
structures in the near-wall region, they required that the wall
stress be correlated to the instantaneous velocity some distance
Ds downstream of the point where the wall stress is required. In
addition to the streamwise shift, Marusic et al. [38] suggested
separating the mean wall stress from its fluctuating part, which
can be multiplied by a constant to match the wall-stress
fluctuations better. The model they propose (which will be
referred to as ‘‘MKP model’’) replaces (4) and (5) with

tw;xðx; z; tÞ ¼ htwixz þ atut½uðxþDs; yol; z; tÞ � Uol�, (6)

tw;zðx; z; tÞ ¼ atutwðxþDs; yol; z; tÞ. (7)

Here, at is a constant (the value 0.10 was suggested in Ref. [38] to
match the spectrum of tw given by (6) with the experimental
one).

Several simple modifications of the standard approximate
boundary conditions are possible. Mason and Callen [39] applied
the logarithmic law instantaneously (an approximation whose
accuracy depends critically on the dimensions of the grid, which
needs to be exceptionally large, in wall units). Wu and Squires [40]
calculated the flow over a bump and obtained ut from a separate
RANS calculation. Hoffman and Benocci [9] and Wang [41]
modified the logarithmic law by including the effects of local
acceleration and pressure gradients. Werner and Wengle [42]
replaced the logarithmic law with a power law. Other modifica-
tions can be made to include the effects of buoyancy (see for
instance [43]) or roughness.

The assumptions underlying the approximate boundary con-
ditions discussed in this section are quite strong, and when
turbulence is not in equilibrium these models may fail catastro-
phically. Balaras et al. [12], for instance, report that the
model diverged when it was applied to a rotating channel
flow, in which the turbulence is damped on one side of the
channel and amplified on the other. More commonly, these
models fail in flows with shallow separation, or with strong
pressure gradients.

Fig. 2, for instance, shows the mean streamlines and contours
of resolved Reynolds shear stress hu0v0i for three calculations of
the flow over a contoured ramp. More detail on these calculations,
and more complete comparisons with experimental data can be
found in [24,44,45]. The geometry is that used by Song and Eaton
[46] for their experiments: the height of the ramp is comparable
to the boundary-layer thickness, and shallow separation is
observed at 70–75% of the ramp length. Three models are
compared: LES that use the logarithmic law as an approximate
boundary condition, and two hybrid calculations that use the DES
approach with the Spalart–Allmaras (SA) [47] eddy-viscosity
model, which will be described later. The model based on the
logarithmic law does not predict the separation at all. That is not
surprising, since the grid is so coarse that most of the recirculation
occurs below the first grid point. The flow prediction in the
immediate vicinity of the ramp trailing edge is significantly
wrong; one can observe also how the instability in the separated
shear layer amplifies the eddy generation there in the hybrid
calculations, resulting in elevated levels of Reynolds shear stress
that are not observed in the logarithmic-law model.

In attached flows, even in the presence of fluid-dynamical non-
equilibrium, the logarithmic-law approximate boundary condition
may give more accurate results. Fig. 3 shows the mean velocity
field in an oscillating boundary layer [48]. The freestream is
subjected to a sinusoidal oscillation, U1 ¼ Uom sinot. The
relevant dimensionless number for this flow is the Reynolds
number based on the Stokes-layer thickness, ds ¼ ð2n=oÞ1=2 and
on the freestream velocity oscillation amplitude, Uom. For this
case, Red ¼ 3500, resulting in a flow with fairly long period,
turbulent through the entire cycle. Two calculations that use the
logarithmic-law boundary condition (one in its standard form, the
other with the MKP modification) and the Lagrangian dynamic
eddy-viscosity (LDEV) model [49] are compared with a hybrid
RANS/LES that uses the SA model. Here, f ¼ ot is the phase angle.
In this case we observe much better agreement between the
simulations that apply the logarithmic law and the experimental
data [50]. The hybrid calculation predicts a very high eddy
viscosity in the near-wall region, and results in excessive mixing,
with a very flat outer-layer profile through most of the cycle, and a
high velocity in the near-wall region near flow reversal (f ¼ 0�).
The two calculations that use the LDEV model give essentially the
same result (the curves are indistinguishable at least during the
first three phases).

Instantaneous picture of the flow for a simulation with
logarithmic-law approximate boundary conditions is shown in
Fig. 4. We show isosurfaces of the second invariant of the velocity
gradient tensor, Q:

Q ¼ �1
2ðOijOij � SijSijÞ, (8)

which has been shown to be effective in highlighting coherent
vortical structures [51,52]. We observe the damping of turbulent
eddies during the acceleration phase, followed by their rapid
regeneration as the freestream velocity becomes approximately
constant. During the deceleration phase, a realistic distribution of
hairpin vortices can be seen, with a predominance of ‘‘heads’’ [53],
as expected in the outer layer of a wall-bounded flow.
3. Zonal approaches

The logarithmic law implies an implicit integration of the
averaged boundary-layer equations from the first grid point to the
wall, under the assumption of constant stress, with a mixing-
length model to parameterize turbulent transport. Hoffman and
Benocci [9] tried to incorporate the effect of pressure gradient and
local acceleration, still within the framework of an integral
formulation. Balaras and Benocci [11], on the other hand, solved
the turbulent boundary-layer equations on an embedded grid
between the first grid point (which should be placed at the edge of
the inner layer) and the wall:

qui

qt
¼ �

q
qxj

uiuj �
qPe

qxi

þ
q
qxj
ðnþ nT Þ

qui

qxj

� �
for i ¼ 1;3, (9)

u2 ¼ �

Z y

0

qu1

qx1
þ
qu3

qx3

� �
dy, (10)

here, qPe=qxi is the pressure gradient at the first point in the outer
layer, which is imposed through the embedded grid, and nT is the
eddy viscosity (given by a simple Prandtl mixing length in [11]).
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forcing; (c) SA WMLES with stochastic forcing. The solid dots represent the experimentally measured separation and reattachment points, the squares the computed ones.
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Balaras et al. [12] applied this approach to rotating channel
flow and flow in a square duct, and obtained improved agreement
with the experimental data, compared with the simple logarith-
mic law. Cabot [13,14] examined the importance of the terms on
the right-hand-side of (9) and found that, in plane channel flow,
imposing the balance between imposed pressure gradient and
viscous plus turbulent diffusion (i.e., imposing an instantaneous
logarithmic law) is sufficient. In a backward-facing step, on the
other hand, all terms in (9) are important.

More recent applications of the TLM include the work of
Diurno et al. [55], who also computed the flow in a backward-
facing step using a SA model for nT, which improved the
agreement with the data. Wang and Moin [10] used the TLM for
the computation of acoustic emission from a trailing-edge
geometry with good success. They demonstrated that the RANS-
type eddy viscosity must be reduced to account for the resolved
fluctuations inside the inner layer. The improvement in the
results can be seen in Fig. 5, in which the skin-friction coefficient
is compared for a calculation that uses the TLM with k ¼ 0:4
(k is the proportionality constant in the mixing-length eddy
viscosity model) with one in which the constant is determined
dynamically.

Gungor and Menon [18] performed calculations of plane
channel flow and flow over an axisymmetric hill using the TLS
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method, in which the small-scale velocity is simulated in each
grid cell using a reduced-order form of the governing equations
for the small scales: the equations are solved along three one-
dimensional lines aligned with the coordinate axes [16,17]. While
the agreement with experimental data is good for the plane
channel flow, the velocity is over-predicted in the hill simulations,
perhaps due to excessively coarse outer-layer resolution.
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Fig. 3. Mean velocity profiles, oscillating boundary layer. (a) f ¼ 0� , 30� and 60�;

(b) f ¼ 90� , 120� and 150� .

Fig. 4. Oscillating boundary-layer flow. Instantaneous isosurfaces of Q ¼ 1 [Q
4. Hybrid RANS/LES methods

Much work has recently gone into developing hybrid methods,
in which the RANS equations are solved in the inner layer, while
the filtered Reynolds-averaged equations are solved away from
the wall. The main issue that affects such hybrid RANS/LES
methods is the disparity of scales between the LES and RANS
regions. In the wall-layer modeling techniques described so far,
the outer layer imposes its scales on the inner one, which
therefore contains eddies as small as the filter size. In hybrid
methods, on the other hand, the inner layer has its own time- and
is defined in Eq. (8)]. (a) f ¼ 0�; (b) f ¼ 45�; (c) f ¼ 90�; (d) f ¼ 135�.

Fig. 5. Distribution of skin-friction coefficient in the trailing-edge computed using

LES with the turbulent boundary layer equation wall model. - - - k ¼ 0:4; —

dynamic k; . . . . . . resolved LES [54]. Reused with permission from M. Wang [10].

Copyright 2002, American Institute of Physics.
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length-scales (determined by the unsteady RANS equations
applied there) which are generally much larger than those of
the outer-layer eddies. This is illustrated in Fig. 6 (from Ref. [22]),
which shows time-histories of the velocity at several locations in a
plane channel. The calculation used the hybrid WMLES based on
the SA [47] model, and the nominal interface between the RANS
and LES regions was at yþ ¼ 225 (y=d ’ 0:05). First, one can
observe that the flow in the RANS region is not steady, but that
low frequency fluctuations can be observed (time in the figure is
normalized by ut and d, so that the observed period, about 0.3–0.5
units, is of the order of the large-eddy turnover time). At yþ ¼ 421
(well above the RANS/LES interface), higher frequencies begin to
appear, but the dominant time-scale is still the one characteristic
of the inner-layer flow, i.e., the time-scale imposed by the RANS
model. Only very far from the wall one observes the high-
frequency fluctuations that one expects in such flows. Similar
observations can be made in terms of length scales: the eddies
immediately above the RANS/LES interface maintain the length
scales characteristic of the RANS zone, and only very far from the
wall the small eddies appear that are capable of supporting the
Reynolds stress in the LES region.

The effects of the lack of resolved eddies in the interface region
can be seen very well in Fig. 7(a), which shows the profiles of the
modeled and resolved stress in a SA-WMLES of turbulent plane
channel flow at Ret ¼ 5000. The modeled stress is significantly
larger than the resolved one even a significant distance above the
nominal interface between RANS and LES. The location where
the modeled and resolved stresses are equal can be used to define
the extent of an effective transition region, in which eddies are
generated that are capable to resolve the Reynolds shear stress.
Only beyond this transition region the eddy content of the
calculation is sufficient to support most of the Reynolds shear
stress.

As discussed by Baggett [21] the lack of resolved eddies in the
interface region results in the LLM, which can be observed in
the velocity profiles shown in Fig. 8. Since the total shear stress, in
the plane channel, is only a function of distance from the wall
(and is determined by the global momentum balance), the
decrease in the eddy viscosity that occurs beyond the RANS/LES
nominal interface, if not accompanied by a corresponding increase
of the resolved Reynolds stress, must result in an increase in the
mean velocity gradient. This ‘‘DES buffer layer’’ bridges an inner
Fig. 6. Time-history of the velocity at various heights above the wall for a SA-

WMLES of plane channel flow at Ret ¼ 5000. þ yþ ¼ 18; –�– yþ ¼ 421; - - -

yþ ¼ 1107; — yþ ¼ 3124. Reused with permission from U. Piomelli [22]. Copyright

2003, Elsevier Science Inc.
region, in which the logarithmic layer has the correct slope and
intercept, with an outer layer in which the slope is correct, but the
intercept is shifted upwards.

The LLM is a feature common to most hybrid RANS/LES
schemes. In the framework of SA-based WMLES it was observed
by Nikitin et al. [20], discussed by Baggett [21], Piomelli et al. [22]
and Keating and Piomelli [23]. Hamba [25,26] observed it in
WMLES that used a k2� model; Temmerman et al. [27] and
Tessicini et al. [56] also observed it in hybrid calculations that use
a k2l or a k2� model. These researchers spend a considerable
effort trying to reduce or remove the LLM by various methods, and
achieve some measure of success when they introduce artificial
fluctuations in the interface region, which are then amplified by
the flow itself. The calculations by Keating and Piomelli [23],
which use stochastic forcing at the RANS/LES interface, illustrate
this phenomenon: the resolved stresses are significantly enhanced
near the RANS/LES interface (Fig. 7(b)), resulting in a much
reduced transition region. Fig. 8 shows how the LLM is reduced for
a range of Reynolds numbers. Improved results were obtained also
in the calculations of the separated flow over a contoured ramp
[44]: Fig. 2 shows both better agreement of the separation and
reattachment points with the experimental measurements, and
also lower levels of hu0v0i stresses, again in good agreement with
the experimental data of Song and Eaton [46]. Accelerating
artificially the development of the eddies capable of supporting
the Reynolds stress appears to be an effective method of
decreasing the extent of the transition region.
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Travin et al. [57] and Shur et al. [58] followed a different
approach: they developed a special blending function for an
SA-based WMLES, which decreases the viscosity significantly in
the interface region (Fig. 9). In a standard SA-WMLES the eddy
viscosity generally increases monotonically, and does not exhibit
the dip shown in the figure. Also notice that the minimum eddy
viscosity occurs around the interface between the inner and outer
layer, i.e., at a distance approximately equal to d=10 from the wall;
depending on the Reynolds number, this translates into the
beginning or the middle of the logarithmic region. The eddy-
viscosity decrease makes the flow in the RANS/LES transition
region less stable, and allows any flow perturbation to be
amplified more rapidly. Their calculations show very good
agreement with the data in a variety of flows, with a complete
removal of the LLM.

In summary, hybrid RANS/LES methods seem to be most
effective in flow conditions that facilitate the rapid amplification
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Fig. 8. Turbulent channel flow: mean velocity profiles in wall units. (a) Ret ¼ 2300,

(b) Ret ¼ 5000, (c) Ret ¼ 8000. - - - SA-WMLES with no stochastic forcing; — SA-
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clarity. Reused with permission from Piomelli [23]. Copyright 2006, Taylor &
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Fig. 9. Profiles of IDDES eddy viscosity normalized by the molecular viscosity in deve
of any instability, whether due to numerical or natural causes.
Separation, concave curvature and adverse pressure gradients
have this effect. In such cases, the eddy generation at the RANS/
LES interface is greatly increased, and accurate results can be
obtained (see for instance the discussion in [24]). These models
are least accurate in attached, thin shear layers, where the
instability mechanisms are comparatively weak; in addition
to the LLM discussed before, other errors can be observed: in
the oscillating boundary-layer flow discussed before (Fig. 3), for
instance, the SA-WMLES predicts excessive levels of eddy
viscosity in the near-wall region. Consequently, the response of
the inner layer to the freestream oscillation is predicted
incorrectly; the high eddy viscosity leads to excessive mixing in
the outer flow, and the inner-layer response is delayed compared
to the experimental data (and the models based on the
logarithmic law).

It should be noted here that Germano [59] derived rigorously
the governing equations obtained when a hybrid RANS/LES filter is
applied to the Navier–Stokes equations, and showed that addi-
tional terms appear both in the conservation equations of mass
and momentum, and in the definition of the unclosed stress.
These additional terms have the form of scale-similar models,
with products of differences between filtered and Reynolds-
averaged velocities, and are most significant in the interface
region. They can conceivably act to enrich the eddy content in the
interface region, with the same effect as the forcing terms that
have been used successfully by other researchers. Early applica-
tions of this approach [60–62] show that the inclusion of the
hybrid terms is beneficial, and may relieve some of the empiricism
required by many of the other methods.
5. Concluding remarks

In this article, the current status of wall-layer modeling has
been briefly reviewed. Three classes of models are described:
equilibrium laws based on the logarithmic law (or on some similar
assumed velocity profile); zonal models, in which the turbulent
boundary-layer equations are solved, weakly coupled to the outer-
layer LES; hybrid methods in which the model changes from a
RANS-based turbulent model near the wall to LES mode in the
outer layer.

Equilibrium laws are the least expensive model, in terms of
computational requirements. The cost of simulations of this kind
scales like the cost of the outer layer, Re0:6. Zonal models require
between 10% and 20% more CPU time for the solution of the
boundary-layer equations, and significantly more memory. The
cost of hybrid RANS/LES methods is higher, since the wall-normal
direction must be well resolved (the SA model, for instance,
loped channel flow at different Ret . Reused with permission from M. Kh. Strelets.
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requires that the first point be at yþ ’ 1), so that the number of
grid points in the wall-normal direction is proportional to log Re,
resulting in a cost that scales approximately like Re0:6 log Re.

It is unreasonable to expect that WMLES may ever be as
accurate as resolved LES: at least in equilibrium flows, the inner
layer is the region where most of the production takes place, and
the eddies are created that grow and are advected into the outer
layer, affecting the momentum transport there too. It may be
overly optimistic to hold the same accuracy standards for
simulations that include such important physical phenomena,
and those that bypass them. Despite this intrinsic shortcoming,
WMLES are able to predict with reasonable accuracy a wide
variety of flows; in many cases the physics of the outer layer are
reproduced well, despite the fact that the inner layer is bypassed
(see, for instance, the relaminarization–retransition sequence
illustrated in Fig. 4), as long as the grid is sufficiently fine to
resolve the outer-flow integral scale.

In WMLES the resolution of the outer layer is, in fact, an often
overlooked issue. Bypassing the wall layer is sometimes viewed as
justification to use excessively coarse grids everywhere; however,
many of the simulations shown here forcefully demonstrate that,
unless the integral scale in the outer layer is resolved well,
uniformly accurate results cannot be obtained. Several of the
author’s own calculations (see, for instance Refs. [23,24,48]) show
how grid sizes greater than d=15 do not result in grid-independent
results, and often give incorrect prediction of the Reynolds
stresses.

Another issue that is often overlooked is the subgrid-scale
modeling error in the outer layer in the vicinity of the wall. This is
a region in which the flow integral scale is proportional to the
distance from the wall, and is necessarily smaller than (or, at best,
comparable to) the grid size. Nicoud et al. [63] used suboptimal
control theory to supply a wall stress that forced the outer LES
to the desired mean velocity profile. With this method the
approximate boundary condition compensates for subgrid-scale
modeling and numerical errors, and obtained improved results
over standard approximate boundary conditions. This approach,
however, is infeasible as a predictive tool, since it requires the
solution to be known a priori to generate the desired cost function.
Corrections to the subgrid-scale stresses near the wall (see, for
instance [64]) may be a more realistic technique to improve the
model accuracy near the wall. Hybrid methods do not suffer from
this constraint, since the RANS model is used to parameterize all
the scales of motion in the near-wall region, and the LES zone is
restricted to the region of the flow where the grid size is
sufficiently smaller than the integral scales to ensure its proper
resolution.

At this point, there is no single method that is clearly superior
to the others. Equilibrium laws give reasonably accurate results in
attached flows, with mild pressure gradients and curvature. Zonal
models have had some success in flows in which the outer layer
drives the inner one, less so when the perturbation is propagated
from the wall outwards. Hybrid methods are most accurate when
the mean flow has some destabilizing perturbation that accel-
erates the generation of Reynolds-stress supporting eddies.
Although the effects of wall roughness (a very important feature
in environmental and oceanographic flows) can be included in
hybrid RANS/LES models, no study of the accuracy of roughness
corrections for WMLES is known to the author. Equilibrium laws,
on the other hand, can include roughness corrections very easily
through modifications of the logarithmic law.

The review paper by Piomelli and Balaras [4] final statement
that ‘‘one may hope that the next five years or so may bring
substantial advancement in this area as well’’ has been revealed to
be perhaps excessively sanguine. Despite the increased attention
to the problem, no universally accepted model has appeared.
There is, however, a better understanding of the limitations and
applicability of WMLES, and a more complete vision of the
interplay between numerical errors, subgrid-scale modeling
errors, and inaccuracies of the wall-layer model. There is still
reason to believe that more general models may be forthcoming
for the calculation of high-Reynolds number flows by LES.
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